

ISSN Print: 2664-6188 ISSN Online: 2664-6196 Impact Factor: RJIF 5.35 IJCBB 2024; 6(1): 56-61 www.biochemistryjournal.net Received: 11-12-2023 Accepted: 13-01-2024

Samar S Mohammed Department of Pharmaceutical Chemistry, College of Pharmacy Tikrit University, Iraq

Synthesis, characterization and biological activity of some Schiff base metal complexes

Samar S Mohammed

DOI: https://doi.org/10.33545/26646188.2024.v6.i1a.60

Abstract

A new five metal complexes C1 - C5 [M = Zn=1, Co=2, Ni=3, Mn=4 and Fe=5], synthesized via the reaction between ligand as (HL) and metal chloride (metals: Zn, Co, Ni, Mn and Fe), the ligand (HL) synthesized from same moles of p-anisidine and salicylaldehyde. The complexes determined via different spectroscopic techniques such as, FT-IR and ¹HNMR. Finally, these complexes tested agent different bacteria to investigate the biological activity of these complexes.

Keywords: Schiff base, metal complexes, biological activity

Introduction

The amino compound undergoes a reaction with the carbonyl compound, resulting in the formation of Schiff bases. Schiff bases are a significant class of ligands due to their inclusion of C=N as the active group. These Schiff bases can then couple with metal ions through azomethine ^[1], a molecule that is now the subject of much investigation. The presence of a C=N bond is essential for the biological activity of azomethine derivative products. Several azomethine derivatives have demonstrated remarkable antibacterial, antifungal, anticancer, and antimalarial characteristics ^[2]. Schiff base ligands have garnered significant attention in the field of coordination chemistry owing to their straightforward production, abundant accessibility, and favorable electrochemical characteristics. Schiff base coordination chemistry has garnered significant interest in recent times because to its crucial role in several fields such as chemical synthesis, analytical chemistry, metal refining, metallurgy, electroplating, and photography ^[3-5]. Schiff bases have several uses in the dye market, in catalytic reactions, fungicides, and as agricultural chemicals ^[6-7]. Several Schiff bases are known to have exceptional antibacterial, antifungal, and anticancer properties ^[8].

Metal compounds have been utilized in medical science for thousands of years due to their diverse properties. However, it was only in the past forty years that the scientific community became interested in the modes of action of complexes composed of metal ions and organic ligands. This development established a significant connection between inorganic and organic chemistry. The field of inorganic medicinal chemistry mostly focuses on investigating the anticancer properties of metal complexes. However, there is also considerable interest in exploring the antimicrobial and anti-inflammatory effects of metal-based medications, such as Auranofin, which is a gold-based treatment for rheumatoid arthritis ^[9-13].

Experimental

General and instrumentals

All the reagents, starting chemicals, and solutions were obtained from a commercial source and used without additional purification. On a Gallen Kamp melting point apparatus with a heated stage, the melting points were recorded. FTIR Bucker Spectrophotometer was used to record the infrared (FTIR) spectrum. On a Bucker 500 MHz spectrometer, ¹HNMR spectra were acquired with deuterated d_6 -DMSO as the solvent.

Corresponding Author: Samar S Mohammed Department of Pharmaceutical Chemistry, College of Pharmacy Tikrit University, Iraq

Synthesis of the Schiff base ligand (HL) [14-15]

The P-anisidine (0.01 mol, 1.23 g) reacted with salicylaldehyde (0.01 mmol, 1.22 g, 1.39 ml) in 15 ml of EtOH, refluxed more than 2 hours. Finally, produce yellowish solid compound separated via filtration, then washed with diethyl ether, and dried.

Synthesis of metal complexes C1 – C5^[16-18]

0.02 mole of the Schiff base ligand (HL) reacted with 0.01 mole of metal chloride (ZnCl₂.H₂O as C1, CoCl₂.H₂O as C2, NiCl₂.H₂O as C3, MnCl₂.H₂O and FeCl₂.H₂O) in 2:1 molar ratio. In hot ethanol dissolved the mixture, reflux for 3 hours and led to form colored products.

https://www.biochemistryjournal.net

 Table 1: The physicochemical properties of synthesized compounds.

Compound No.	Melting point °C	Color	Yelled %
HL	129 - 131	Yellow	59
C1	125 - 127	Yellowish green	70
C2	119 - 121	Blue	69
C3	97 - 100	Green	72
C4	89 - 91	Yellowish green	68
C5	102 - 104	Black	69

Results and Discussion

The ligand HL, FT-IR (cm⁻¹) as shown in figure 1: FT-IR (cm⁻¹): The v(OH) appeared at 3333 ^(19, 20), v(C=N) 1621, v(C-N) 1333, v(C-O) phenolic 1253, v(C-H) Aromatic 3089 ^[21].

Fig 1: FTIR spectrum of compound HL.

The ligand HL, ¹HNMR (500 MHz, DMSO-d6, δ , ppm) as shown in figure 2: δ 9.66 (s, O-H), 8.44 (s, proton of

azomethine), 7.90- 6.63 (C-H aromatic) ^[22, 23], 3.50 (HDO), 2.45 (DMSO as solvent).

Fig 2: HNMR spectrum of compound HL.

The complexes C1, FT-IR (cm⁻¹) as shown in figure 3: The ν (OH) hydroxyl group appeared as broad band at 3461, the active group of azomethine for schiff base appeared at 1647, ν (C-N) 1374, ν (C-O) 1228. the coordinated water ν (H₂O) as

two stretching bands 847 and 785, coordinated water v(M-O) as stretching bands 501, the band of v(M-O) that appeared at 612. finally, the metal-nitrogen v(M-N) appeared at 419 ^[24].

Fig 3: FTIR spectrum of complex C1.

The complexes C1, ¹HNMR (500 MHz, DMSO-d6, δ , ppm) as shown in figure 4: 9.25 and 9.27 (s, proton of OH

phenolic), 6.87–7.44 (m, protons of aromatic ring), 7.89 and 7.91 (s, CH=N) $^{\left[25\right]}$.

Fig 4: HNMR spectrum of complex C1.

The complexes C1, FT-IR (cm⁻¹) as shown in figure 5: the broad band of v (OH) appeared at 3383, the group v (C=N) appeared at band 1653, v (C-N) 1367, v (C-O) 1248. The stretching bands of v (H₂O) coordinated water showed two

band 832 and 779, v (M-O) stretching bands of coordinated water 557, metal-oxygen band as v (M-O) that showed at 651. Finally, the band v (M-N) at 466 $^{[26-28]}$.

Fig 5: FTIR spectrum of complex C2.

The complexes C2, 1HNMR (500 MHz, DMSO-d6, δ , ppm) as shown in figure 6: 9.49 (s, proton of OH phenolic), 6.63 –

8.61 (m, proton of aromatic ring), 7.61 and 7.41 (s, H, CH=N) $^{\rm [29-30]}.$

Fig 6: HNMR spectrum of complex C2.

Fable 2: FTIR	spectrum fo	r compounds	C1 –	C5.
----------------------	-------------	-------------	------	-----

Compound NO.	О-Н	C-H Aromatic	C=N	C-0	M-O	M-N
HL	3333	3089	1641	1239		
C1	3461	3031	1627	1228	612	419
C2	3383	3117	1617	1248	651	466
C3	3401	3067	1632	1236	643	438
C4	3379	3146	1628	1231	647	426
C5	3301	3089	1616	1235	639	425

The molar conductivity $(10^{-3} \text{ M}, \text{DMSO} / \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1})$: 19.40 for complex C1, 41.20 for complex C2, 43 for complex C3, 38.20 for complex C4 and 67 for complex C5.

Biological Activity of synthesized compounds C1-C3

The synthetic complexes C1 and C3 have undergone testing against both gram-positive and gram-negative bacteria, such as Staphylococcus, bacillus subtilis, pseudomonas aerugi, and escherichia coli. The microorganisms were provided as pre-cultured bacterial cultures at concentrations of 25 and 50 mg/ml using the Agar well Diffusion technique ^[31]. The inhibitory diameter of each pore was measured using a ruler. The zone of inhibition refers to the translucent area that

encloses the disc, including the unaffected diameter of the disk. All of these results are displayed in Table 2.

The cell wall of bacterial cells is composed of peptidoglycan, a complex network of elongated sugar polymers. The process of cross-linking the glycan strands in the peptidoglycan is facilitated by transglycosidases. This entails the extension of peptide chains from the sugars present in the polymers, resulting in the formation of cross linkages between peptides (32). In the presence of penicillin binding proteins (PBPs), the D-alanyl alanine segment of the peptide chain undergoes crosslinking through glycine residues ^[33].

Table 3: Antibacterial activities	s of the compounds (C1 and C3).
-----------------------------------	---------------------------------

	Zone of inhibition (mm)			
Bacteria name	Compound C1		Compound C3	
	[con. 25 mg/ml]	[con. 5 0 mg/ml]	[con. <i>25</i> mg/ml]	[con. <i>5</i> 0 mg/ml]
Staphylococcus	37	40	36	39
Bacillus subtilis	40	43	43	45
Pseudomonas aerug	4 5	47	42	48
Escherichia coli	37	42	40	47

References

- 1. El-Sonbati AZ, Mahmoud WH, Mohamed GG, Diab MA, Morgan SM, Abbas SY. Synthesis, characterization of Schiff base metal complexes and their biological investigation. Appl Organomet Chem. 2019 Sep;33(9):e5048.
- 2. Yousif E, Majeed A, Al-Sammarrae K, Salih N, Salimon J, Abdullah B. Metal complexes of Schiff base: preparation, characterization and antibacterial activity. Arab J Chem. 2017;10:S1639-S1644.
- 3. Pfeiffer P, Buchholz E, Bauer O. Innere komplexsalze von oxyaldiminen und oxyketiminen. J Prakt Chem. 1931;129(1):163-177.
- 4. Pfeiffer P, Breith E, Lübbe E, Tsumaki T. Tricyclische orthokondensierte nebenvalenzringe. Justus Liebigs Ann Chem. 1933;503(1):84-130.
- 5. Kumar S, Dhar DN, Saxena PN. Applications of metal complexes of Schiff bases-A review.
- 6. Gaur MS. Physico-chemical and biological properties of Mn (II), Co (II), Ni (II) and Cu (II) chelates of Schiff bases. Asian J Chem. 2003;15(1):250.
- Genin MJ, Biles C, Keiser BJ, Poppe SM, Swaney SM, Tarpley WG, *et al.* Novel 1, 5-diphenylpyrazole nonnucleoside HIV-1 reverse transcriptase inhibitors with enhanced activity versus the delavirdine-resistant P236L mutant: lead identification and SAR of 3-and 4substituted derivatives. J Med Chem. 2000 Mar 2;43(5):1034-1040.
- 8. Abdel-Rahman LH, Adam MSS, Abu-Dief AM, Moustafa H, Basha MT, Aboraia AS, *et al.* Synthesis, theoretical investigations, biocidal screening, DNA binding, *in vitro* cytotoxicity and molecular docking of novel Cu (II), Pd (II) and Ag (I) complexes of chlorobenzylidene Schiff base: Promising antibiotic and anticancer agents. Appl Organomet Chem. 2018 Dec;32(12):e4527.
- 9. Leung CH, Lin S, Zhong HJ, Ma DL. Metal complexes as potential modulators of inflammatory and autoimmune responses. Chem Sci. 2015;6(2):871-884.
- 10. Kupcewicz B, Sobiesiak K, Malinowska K, Koprowska K, Czyz M, Keppler B, *et al.* Copper(II) complexes

with derivatives of pyrazole as potential antioxidant enzyme mimics. Med Chem Res. 2013;22(5):2395-2402.

- Gasser G, Metzler-Nolte N. The potential of organometallic complexes in medicinal chemistry. Curr Opin Chem Biol. 2012;16(1-2):84-91.
- 12. Desoize B. Metals and metal compounds in cancer treatment. Anticancer Res. 2004;24(3a):1529-1544.
- Graham GG, Kettle AJ. The activation of gold complexes by cyanide produced by polymorphonuclear leukocytes. III. The formation of aurocyanide by myeloperoxidase. Biochem Pharmacol. 1998 Aug 15;56(3):307-312.
- 14. El-Sonbati AZ, Mahmoud WH, Mohamed GG, Diab MA, Morgan SM, Abbas SY. Synthesis, characterization of Schiff base metal complexes and their biological investigation. Appl Organomet Chem. 2019 Sep;33(9):e5048.
- Ashraf MA, Mahmood K, Wajid A, Maah MJ, Yusoff I. Synthesis, characterization and biological activity of Schiff bases. IPCBEE. 2011 Jan;10(1):185.
- 16. Azam M, Al-Resayes SI, Trzesowska-Kruszynska A, Kruszynski R, Adil SF, Lokanath NK. Pyridine solvated dioxouranium complex with salen ligand: Synthesis, characterization and luminescence properties. J Saudi Chem Soc. 2019 May;23(5):636-641.
- 17. Mishra M, Tiwari K, Mourya P, Singh MM, Singh P. Synthesis, characterization and corrosion inhibition property of nickel (II) and copper (II) complexes with some acylhydrazine Schiff bases. Polyhedron. 2015;89:29-38.
- Salehi M, Ghasemi F, Kubicki M, Asadi A, Behzad M, Ghasemi MH, *et al.* Synthesis, characterization, structural study and antibacterial activity of the Schiff bases derived from sulfanilamides and related copper (II) complexes. Inorgan Chim Acta. 2016;453:238-246.
- Consumi M, Leone G, Tamasi G, Magnani A. Water content quantification by FTIR in carboxymethyl cellulose food additive. Food Addit Contam Part A. 2021;38(10):1629-1635.

- 20. Petit T, Puskar L. FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diamond Relat Mater. 2018;89:52-66.
- Novais Â, Freitas AR, Rodrigues C, Peixe L. Fourier transform infrared spectroscopy: unlocking fundamentals and prospects for bacterial strain typing. Eur J Clin Microbiol Infect Dis. 2019 Mar;38(3):427-448.
- 22. De Graaf RA. *In vivo* NMR spectroscopy: principles and techniques. John Wiley & Sons; c2019.
- 23. Lambert JB, Mazzola EP, Ridge CD. Nuclear magnetic resonance spectroscopy: an introduction to principles, applications, and experimental methods. John Wiley & Sons; c2019.
- 24. Leri AC, Pavia AP. Analysis of Plastic Waste for Sorting in Recycling Plants: An Inquiry-Based FTIR Spectroscopy Experiment for the Organic Chemistry Laboratory. J Chem Educ. 2022 Feb;99(2):1008-1013.
- 25. Youngman R. NMR spectroscopy in glass science: A review of the elements. Materials. 2018;11(4):476.
- 26. Jeng MJ, Sharma M, Sharma L, Chao TY, Huang SF, Chang LB, *et al.* Raman spectroscopy analysis for optical diagnosis of oral cancer detection. J Clin Med. 2019 Sep;8(9):1313.
- 27. Selvaraj R, Vasa NJ, Nagendra SS, Mizaikoff B. Advances in mid-infrared spectroscopy-based sensing techniques for exhaled breath diagnostics. Molecules. 2020 May;25(9):2227.
- 28. Prananto JA, Minasny B, Weaver T. Near infrared (NIR) spectroscopy as a rapid and cost-effective method for nutrient analysis of plant leaf tissues. Adv Agron. 2020;164:1-49.
- 29. Ionin BI, Ershov BA, Kol'tsov AI. NMR spectroscopy in organic chemistry. Khimiya, Leningrad. 1983;167.
- 30. Ionin BI. NMR spectroscopy in organic Chemistry. Springer Science & Business Media; c2012.
- 31. Garima K, Saurabh S, Ashok E. Review article; c2020.
- 32. Hauser AR, editor. Cell envelope. In: Antibiotic Basics for Clinicians. 2nd ed. New Delhi: Wolters Kluwer (India) Pvt. Ltd; c2015. p. 3-5.
- 33. Kahne D, Leimkuhler C, Lu W, Walsh C. Glycopeptide and lipoglycopeptide antibiotics. Chem Rev. 2005;105:425-48.