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Abstract 

Renal calculi, which are common urological problems with frequent recurrences, have been effectively 

managed with the development of minimally invasive procedures. Although contemporary stone 

treatment procedures have reached a level of maturity, their main focus is on dealing with stones that 

already exist, and they face challenges in effectively preventing the occurrence and reappearance of 

stones. This underscores the necessity of prioritizing prevention following therapy. Renal calculi are 

predominantly composed of calcium oxalate, accounting for more than 80% of cases. Although there is 

considerable study on urinary calcium metabolism, there is a significant lack of understanding on the 

specific role of oxalate. Oxalate and calcium are both essential components of calcium oxalate stones, 

and abnormalities in oxalate metabolism and excretion are significant factors in their formation. This 

review examines the relationship between kidney stones and the metabolism of oxalate, with a specific 

focus on the processes of oxalate absorption, metabolism, and excretion. This study examines the vital 

function of SLC26A6 in the removal of oxalate and investigates the regulatory mechanisms that govern 

SLC26A6 in the transport of oxalate. This review offers innovative perspectives on the mechanisms of 

kidney stones by specifically focusing on the oxalate viewpoint. This study improves our 

comprehension of the function of oxalate and provides remedies to decrease the frequency and 

reappearance of kidney stones. 
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Introduction 

Renal calculi are a prevalent urological issue, with a global increase in prevalence and 

incidence. A national survey found a 6.4% prevalence, affecting about 1 in 17 adults, with 

higher rates among men (6.5%) than women (5.1%) [1]. In the United States, the prevalence is 

consistently rising [2], and stones frequently recur post-treatment, with an estimated 

recurrence rate of 50% [3]. Studies by O Kamihira et al. indicate recurrence rates of 6.7%, 

28.0%, and 41.8% after 1, 3, and 5 years, and in children, rates of 26%, 35%, 41%, and 46% 

after 5, 10, 15, and 20 years, respectively [4, 5]. Renal calculi formation is associated with a 

higher risk of diseases like hypertension, chronic kidney disease, and end-stage renal disease, 

posing a substantial annual health burden [6, 7]. 

The key steps in the formation of renal calculi include urine supersaturation, nucleation, 

crystallization, growth, and aggregation [8]. Nucleation and crystallization, fundamental 

chemical processes, occur regardless of the stone production method. Randall's theory, 

widely acknowledged, centers on the formation of calcium phosphate crystals in the renal 

interstitium. Crystals in the shape of plaques develop below the epithelial layer on the 

basement membrane of the Henle loop. Approximately 75% of calcium oxalate stones are 

associated with Randall's plaque, a condition characterized by the gradual buildup of 

minerals and their infiltration into the epithelium, ultimately leading to stone formation. 

 

Oxalate and Renal Calculi 

Oxalate plays a vital role in the production of kidney stones, specifically calcium oxalate 

stones, which make up more than 80% of these stones [10]. The production of these stones is 

driven by the supersaturation of urine calcium oxalate, which is caused by key risk factors 

such as hypercalciuria and hyperoxaluria. Studies extensively investigate the formation of 

stones in relation to urinary calcium metabolism.  

International Journal of  Clinical  Biology and Biochemistry  2024; 6(1): 12-19 

 

https://www.biochemistryjournal.net/
https://doi.org/10.33545/26646188.2024.v6.i1a.52


 

~ 13 ~ 

International Journal of Clinical Biology and Biochemistry https://www.biochemistryjournal.net 
  
 

However, It is crucial to emphasize that the role of oxalate, 

which is a crucial raw material, is equally or even more 

significant than that of calcium [12]. The urine oxalate 

content is crucial, as even small changes can have a major 

effect on the development of calcium oxalate crystals [12-14]. 

Hyperoxaluria not only encourages the formation of calcium 

oxalate crystals, but also harms the cells lining the renal 

tubules, making it easier for the crystals to stick to them due 

to oxidative stress. Subsequent immune inflammatory 

responses contribute to the further enhancement of Randall 

plaque development [15]. Research suggests that 

hyperoxaluria causes a transformation of renal tubular 

epithelial cells into osteoblast morphologies, which 

contributes to the production of Randall plaque and kidney 

stones [16]. 

 

Source of oxalate 

The sources of oxalate are categorized into external and 

endogenous origins, as seen in Figure 1. Exogenous sources 

refer to the absorption of oxalate from the diet by the 

intestine, which accounts for 20-40% of the oxalate found in 

the blood. The liver, red blood cells, and ascorbic acid are 

endogenous sources that generate oxalate via metabolic 

processes [17]. Overproduction of oxalate results in the 

development of hyperoxaluria and the creation of oxalate 

stones. People who have inherited glyoxylate diseases 

release too much oxalate into the urine, which leads to 

primary hyperoxaluria. Increased oxalate consumption, a 

diet low in calcium, impaired fat absorption, and changes in 

the composition of gut bacteria are some of the causes of 

secondary hyperoxaluria [18]. 

 

 
 

Fig 1: Illustrates the absorption mechanism of oxalate in the intestine and kidney 
 

Endogenous sources of oxalate and primary 

hyperoxaluria 

Approximately 60-80% of plasma oxalate is produced 

endogenously by hepatic metabolism [19]. In the liver, lactate 

dehydrogenase (LDH) converts glyoxylate into oxalate as 

part of a metabolic process. The enzymes Alanine-

glyoxylate aminotransferase (AGT) and glyoxylate 

reductase-hydroxypyruvate reductase (GRHPR) reduce the 

concentrations of naturally present oxalate by converting 

glyoxylate into glycine and metabolizing glyoxylates, 

respectively. The enzyme 4-hydroxy-2-oxoglutarate 

aldolase (HOGA) aids in the hydroxyproline metabolism 

process, as depicted in Figure 2. Insufficient enzyme levels 

lead to an excess of naturally occurring oxalate, resulting in 

primary hyperoxaluria. The most severe form, Type 1, can 

be further classified into three subtypes: Type 1 with a 

genetic deficiency of AGT, Type 2 with a genetic deficiency 

of GRHPR, and Type 3 with a genetic deficiency of HOGA. 

Primary hyperoxaluria results in the accumulation of 

oxalate, the formation of renal calculi, and renal 

impairment, ultimately culminating in end-stage renal 

failure [18]. 

Figure 2: Illustrates the hepatic metabolic route of oxalate. 

Metabolic conversions occur within hepatocytes, where 

different oxalate precursors are transformed to generate the 

immediate precursor glyoxylate. Subsequently, lactate 

dehydrogenase (LDH) converts glyoxylate into oxalate. 

 

Exogenous sources of oxalate 
Around 20-40% of the oxalate found in the plasma comes 

from the food we eat and is taken in by the intestine. 

Although exogenous oxalate only makes up a small part of 

the total oxalate in the blood, its levels can be influenced by 

different circumstances, making it extremely variable and 

easily changed by individuals. Managing exogenous oxalate 

offers a pragmatic strategy to proactively avoid the 

development of kidney stones. Experiments conducted on 

mice with hyperoxaluria, who were given a diet without 

oxalate, demonstrated a notable enhancement in 

hyperoxaluria. This confirms that a considerable amount of 

urinary oxalates originate from the intestines [19]. Therefore, 

it is essential to understand the process by which oxalate is 

absorbed in the intestine and to determine the elements that 

impact its absorption. 
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Absorption mechanism of oxalate in the intestine 

The mechanism of oxalate absorption in the intestine, 

whether paracellular, transcellular, or a combination, 

remains inconclusive. Knauf et al. [21] observed mouse 

intestines, suggesting passive paracellular absorption of 

oxalate, dependent on the balance with SLC26A6-mediated 

oxalate secretion. In contrast, Robert W. Freel et al. [22] 

found varied oxalate fluxes in WT and DRA knockout mice, 

proposing SLC26A3 mediates oxalate absorption across 

cellular pathways. Discrepancies were attributed to technical 

differences, with Whittamore et al. [23] indicating a potential 

involvement of both paracellular and transcellular pathways 

in oxalate absorption. 

 

Factors affecting intestinal absorption of oxalate 

Various variables affect the absorption of oxalate in the 

intestines, including the action of intestinal microorganisms, 

the type of oxalate, and the process of absorbing fat in the 

intestines. A diet deficient in calcium is seen as a 

contributing factor for the production of oxalate stones. This 

is due to the presence of calcium in the intestines can react 

with oxalate to form calcium oxalate, which is insoluble and 

difficult to absorb. Consequently, it is eliminated through 

defecation. Inadequate dietary calcium results in reduced 

bonding of oxalate to other substances, facilitating its 

absorption and causing elevated levels of oxalate in the 

bloodstream (Hyperoxalemia) [24-26]. A recent case study 

investigated the impact of a diet lacking calcium on 

hyperoxaluria, a medical disease defined by elevated levels 

of oxalate in the urine. The study revealed that reintroducing 

calcium into the diet resulted in a substantial reduction in 

the concentration of oxalate in the urine. This underscores 

the need of consuming calcium to avoid the development of 

calcium oxalate kidney stones [27]. 

In addition, insufficient absorption of fats or a diet high in 

fats can lead to increased levels of unbound fatty acids. 

These fatty acids can then bind with calcium from the diet, 

resulting in an increase in the amount of unbound oxalate 

and its absorption. Fatty acids additionally increase the 

permeability of the nearby mucosa, facilitating the 

absorption of oxalate [28, 29]. The occurrence of hyperoxaluria 

and stone formation significantly increases after Roux-en-Y 

gastric bypass and malabsorption bariatric surgery, mainly 

due to impaired fat absorption [31-34]. Conditions marked by 

inadequate fat absorption, such as Crohn's disease [35, 36], 

biliary tract disease [30], pancreatic disease [37], and short 

bowel syndrome [38], frequently display hyperoxaluria. 

When people have difficulty absorbing fat, taking fat-

soluble vitamins as supplements is found to be associated 

with a decrease in the amount of oxalate excreted in the 

urine [39]. 

 

Intestinal microbes and oxalate metabolism 

Preventing calcium oxalate stones may be achieved by 

enhancing intestinal oxalate degradation, addressing the 

origin of hyperoxaluria. The lack of an inherent oxalate 

degradation pathway in the human body necessitates the 

exogenous acquisition of oxalate-degrading enzymes. 

Oxalate-degrading bacteria, including "specialist 

oxalotrophs" like Oxalobacter formigenes and "generalist 

oxalotrophs" Bacteria such as Bifidobacterium animalis, 

Lactobacillus acidophilus, and Lactobacillus gasseri possess 

frc and oxc genes within the human intestine. Benjamin K. 

Canales et al. [51] showed that model rats colonized with O. 

formigenes experienced a 74% drop in the amount of 

oxalate excreted in their urine. Similarly, Bernd Hoppe et al. 
[59] found that patients who took O. formigenes oral 

preparations experienced a 19% reduction in urinary oxalate 

after 24 hours. Intestinal colonization by bacteria that can 

break down oxalate is a potentially effective approach to 

decrease the absorption of oxalate and avoid the formation 

of oxalate stones [40-64]. 

 

Structure and physiological function of SLC26A6 

The solute-linked carrier 26 gene family 6 protein 

(SLC26A6) acts as a versatile anion exchanger, displaying 

the broadest range of transport capabilities within the 

SLC26A family. It facilitates the transportation of diverse 

anions [76]. SLC26A6 is a transmembrane secondary 

transporter composed of 759 amino acids. The protein 

possesses a domain responsible for inserting into the 

membrane, consisting of 14 α-helices of different lengths. 

The helices are organized into two structurally analogous 

segments. The structure of each area is composed of seven 

transmembrane segments, which are organized in two 

inverted repetitions [77]. The C-terminus harbors a STAS 

domain, which exerts a pivotal function in intracellular 

transportation and protein-protein interactions. Eliminating 

this domain impedes the transport of substrates within the 

membrane region [78, 79] Furthermore, the C-terminus has a 

common PDZ interaction motif, similar to that seen in the 

cystic fibrosis transmembrane conductance regulator 

(CFTR). This motif facilitates essential protein-protein 

interactions that are required for the assembly of 

multiprotein complexes [80]. SLC26A6 is highly prevalent in 

several human tissues and serves as a flexible transporter for 

a wide range of anions. It enables the transport of anions, 

including chloride/hydrogen carbonate, chloride/formic 

acid, chloride/oxalate, chloride/nitrate, sulfate/oxalate, and 

chloride/hydroxide. SLC26A6 plays a crucial role in 

preserving ion equilibrium and acid-base homeostasis. The 

presence of any dysfunction in SLC26A6 is highly 

correlated with a variety of diseases. It is glycosylation that 

makes SLC26A6's transportation function possible, and 

research has shown that N-glycosylation is a key part of the 

folding, transport, and function of many membrane proteins 
[83]. Glycosylation on promoters 167 and 172 is essential for 

the oxalate transport pathway. The activity of oxalate 

transport is significantly reduced by removing glycosylation 
[84]. The kidneys and gut have SLC26A6 that doesn't work 

right, which is linked to high levels of hyperoxalate in the 

blood and urine and the formation of renal calcium oxalate 

stones [85]. 

 

Oxalate excretion in the renal and stone formation 
The primary route for the excretion of oxalate is via the 

renal system, predominantly through glomerular filtration 
[86]. The secretion in the renal tubules also affects the 

excretion of oxalate [87, 88]. In individuals without previous 

medical conditions, oxalate is efficiently eliminated by the 

glomeruli, and its excretion in the renal tubules is regulated 

by SLC26A6 [89]. Therefore, alterations in SLC26A6 

expression could impact the release of oxalate, and the 

control of SLC26A6 expression has the ability to influence 

the secretion of oxalate in the proximal tubules. The 

SLC26A6 protein, which is found on the inner surface of the 

proximal tubule, helps move oxalate from cells to urine by 

exchanging Cl- ions with it. This helps the body get rid of 

https://www.biochemistryjournal.net/


 

~ 15 ~ 

International Journal of Clinical Biology and Biochemistry https://www.biochemistryjournal.net 
  
 

oxalate. It can also help move oxalate from the urine into the 

cell through a process called SO₄2−/oxalate exchange, 

which is a way for oxalate to be reabsorbed [17]. Perfusion 

studies have shown that in rats, the S1 and S2 sections of the 

proximal tubule take in oxalate, while the S3 section 

releases oxalate [87, 90]. When the kidneys don't properly 

express SLC26A6, it can cause problems with the removal 

of oxalate. This can lead to high levels of oxalate in the 

urine and the formation of oxalate stones. 

 

Oxalate excretion in the intestine and stone formation 

The digestive tract serves as an auxiliary route for the 

excretion of oxalate by the kidneys, playing a vital function 

in restricting the overall uptake of oxalate by the intestines. 

Which means that this restriction limits how much oxalate 

the kidneys can get rid of. This lowers the amount of oxalate 

in the urine and stops oxalate stones from forming. The 

mediation of oxalate secretion in the stomach relies on 

SLC26A6 [94, 95]. Research conducted by Zhirong Jiang et al. 

discovered a notable occurrence of hyperoxalemia, 

hyperoxaluria, and oxalate stones in mice that lacked the 

SLC26A6 gene [94]. The suggested mechanism says that 

when mice don't have the SLC26A6 gene, there is less 

oxalate released in the stomach by SLC26A6. This means 

that more oxalate is absorbed in the colon. Due to the high 

amount of oxalate in the blood, the body excretes more of it 

through urine. This is called hyperoxaluria and it can lead to 

the formation of oxalate stones. Similar results were seen by 

Robert W. Freel et al., who found that oxalate production 

changed into oxalate absorption in the ileum of SLC26A6 

KO mice compared to wild-type (WT) mice. The urinary 

excretion of oxalate in mice without the SLC26A6 gene was 

found to be four times higher than in animals with the wild-

type (WT) gene. In a study [95], it was found that giving WT 

mice an injection of the inhibitor DIDS, which targets the 

mouse anion transporter SLC26A6, changed the ileum. 

Particularly, the ileum shifted from secreting oxalate to 

absorbing it. After more research, these results were 

confirmed, showing a link between problems in the 

SLC26A6 gene and the development of urolithiasis [96, 97]. 

The rat model of chronic renal failure showed that 

SLC26A6-controlled oxalate secretion from the intestines is 

important for lowering the body's overall oxalate levels [98]. 

Oxalate gets into the distal colon of mice through a different 

network than SLC26A6. This network may include other 

transporters that haven't been found yet [99]. When the 

kidneys have more SLC26A6, they get rid of more oxalate 

in the urine, which makes kidney stones more likely to form. 

In contrast, overexpression of SLC26A6 in the intestine 

leads to increased production of oxalate in the intestines and 

decreased excretion of oxalate in urine. This protects against 

the formation of stones. Therefore, SLC26A6 is anticipated 

to be an extremely advantageous target for the treatment and 

prevention of stone formation. Modulating the expression of 

SLC26A6 by either up-regulating or down regulating it has 

the potential to inhibit the production of renal calculi. 

 

SLC26A6 gene mutation and oxalate stones 

SLC26A6 is crucial in the prevention of kidney stones as it 

controls the overall absorption of oxalates in the intestines. 

Dysfunctions and genetic alterations in the human 

SLC26A6 gene can result in hyperoxaluria and the 

development of renal calculi. Multiple studies have 

examined the influence of SLC26A6 genetic variations on 

the formation of kidney stones in humans [100-104]. 

Six missense mutations in the SLC26A6 gene were found in 

both the case and control groups during the original 

research. The mutation C.616G > A (p.Val206 Met) was the 

most prevalent (11%), however, it did not have a significant 

impact on plasma or urine oxalate levels in the population 
[100]. A separate investigation examined the correlation 

between the SLC26A6 gene 206 M polymorphism and the 

susceptibility to renal calculi in individuals diagnosed with 

primary hyperparathyroidism (PHPT). The results showed 

no association between the SLC26A6 gene 206M 

polymorphism and renal calculi in patients with primary 

hyperparathyroidism (PHPT) [87]. 

Xiuli Lu et al. performed computational screening to find 

non-homologous single nucleotide polymorphisms (nsSNPs) 

linked to kidney stones in the SLC26A6 gene. The study 

discovered a non-synonymous single nucleotide 

polymorphism (nsSNP) called rs184187143 as a potentially 

disease-related variation in the SLC26A6 gene. Individuals 

who carry the C allele had a 6.1 times increased chance of 

developing kidney stones compared to those who have the G 

allele [88]. Liana and colleagues discovered two new 

variations in the STAS domain of the SLC26A6 gene. The 

alterations caused a disruption in the control of NADC-1-

mediated citrate transport by decreasing the connection 

between the STAS domain of SLC26A6 and NADC-1. This 

led to the development of hypocitraturia and the formation 

of calcium oxalate kidney stones [89]. 

In a recent study conducted by Nicolas Cornière et al., a rare 

heterozygous missense mutation (c.1519C > T/p.R507W) in 

the SLC26A6 gene was discovered in a patient with calcium 

oxalate nephrolithiasis and severe hyperoxaluria. 

Transfecting the R507W mutation into OKP cells resulted in 

reduced expression of SLC26A6 and a notable decline in 

oxalate transport activity. The findings strongly indicate that 

the p. R507W mutation has an impact on both the 

expression and transport function of SLC26A6 [90]. 

 

Conclusion 

Given the prevalent occurrence and recurrence of renal 

calculi, urologists tend to prioritize treatment over 

preventive measures. However, the paramount importance 

of prevention necessitates a shift in focus for future research 

toward understanding the etiology and pathogenesis of renal 

calculi. Calcium oxalate stones, a predominant type, can be 

effectively mitigated through targeted interventions 

addressing the source and excretion of oxalate. Intestinal 

bacteria responsible for oxalate degradation play a crucial 

role in limiting oxalate absorption, contingent on the 

intricate composition of the entire intestinal flora. The 

development of bacterial therapies for kidney stone 

prevention should thus consider the complexity of the entire 

intestinal microbiome. 

SLC26A6 emerges as a key player in oxalate excretion, 

presenting a potential target for both the prevention and 

treatment of renal calculi. Its expression in the intestine 

facilitates oxalate excretion, thereby reducing urinary 

oxalate and providing a protective effect against renal 

calculi. Conversely, its expression in the kidney promotes 

oxalate excretion, leading to increased urinary oxalate and 

the promotion of renal calculi formation. Future research 

endeavors should validate the practicality of selectively up-

regulating or down-regulating the SLC26A6 gene for 

https://www.biochemistryjournal.net/


 

~ 16 ~ 

International Journal of Clinical Biology and Biochemistry https://www.biochemistryjournal.net 
  
 

preventing and treating oxalate stones. Our current 

understanding of stone etiology and pathogenesis remains 

limited, underscoring the need for further research to deepen 

our insights in this critical domain. 
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